Recombinant soluble human tissue factor secreted by Saccharomyces cerevisiae and refolded from Escherichia coli inclusion bodies: glycosylation of mutants, activity and physical characterization.

نویسندگان

  • M J Stone
  • W Ruf
  • D J Miles
  • T S Edgington
  • P E Wright
چکیده

Tissue factor (TF) is the cell-surface transmembrane receptor that initiates both the extrinsic and intrinsic blood coagulation cascades. The abilities of TF to associate with Factor VIIa and Factor X in a ternary complex and to enable proteolytic activation of Factor X by Factor VIIa reside in the extracellular domain of TF. We describe the expression of the surface domain of TF (truncated TF, tTF) in both Saccharomyces cerevisiae and Escherichia coli and the biochemical and physical characterization of the recombinant proteins. Wild-type tTF and several glycosylation-site mutants were secreted efficiently by S. cerevisiae under the control of the yeast prepro-alpha-signal sequence; the T13A,N137D double mutant was the most homogeneous variant expressed in milligram quantities. Wild-type tTF was expressed in a non-native state in E. coli inclusion bodies as a fusion protein with a poly(His) leader. The fusion protein could be fully renatured and the leader removed by proteolysis with thrombin; the correct molecular mass (24,729 Da) of the purified protein was confirmed by electrospray mass spectrometry. Recombinant tTFs from yeast, E. coli and Chinese hamster ovary cells were identical in their abilities to bind Factor VIIa, to enhance the catalytic activity of Factor VIIa and to enhance the proteolytic activation of Factor X by Factor VIIa. Furthermore, CD, fluorescence emission and NMR spectra of the yeast and E. coli proteins indicated that these proteins are essentially identical structurally.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Process Development of Recombinant Human Granulocyte Colony-Stimulating Factor (rh-GCSF) Production in Escherichia coli

Background: The protein hormone granulocyte colony-stimulating factor (GCSF) stimulates the production of white blood cells and plays an important role in medical treatment of cancer patients. Methods: An efficient process was developed for heterologous expression of human GCSF in E. coli BL21 (DE3). The feeding rate was adjusted to achieve the maximum attainable specific growth rate under crit...

متن کامل

Periplasmic expression of Bacillus thermocatenulatus lipase in Escherichia coli in presence of different signal sequences

Efforts to express lipase in the periplasmic space of Escherichia coli have so far been unsuccessful andmost of the expressed recombinant lipases accumulate in the insoluble cell fraction. To evaluate the role ofnative and heterologous signal peptides in translocation of the lipase across the inner membrane of E. coli,the lipase gene (btl2) was cloned downstream of the native ...

متن کامل

Expression of a fungal manganese peroxidase in Escherichia coli: a comparison between the soluble and refolded enzymes

BACKGROUND Manganese peroxidase (MnP) from Irpex lacteus F17 has been shown to have a strong ability to degrade recalcitrant aromatic pollutants. In this study, a recombinant MnP from I. lacteus F17 was expressed in Escherichia coli Rosetta (DE3) in the form of inclusion bodies, which were refolded to achieve an active enzyme. Further, we optimized the in vitro refolding conditions to increase ...

متن کامل

Molecular Cloning and Characterization of a Lipase from an Indigenous Bacillus pumilus

Cloning and sequencing of a lipase gene from an indigenous Bacillus pumilus, strain F3, revealed an open-reading frame of 648 nucleotides predicted to encode a protein of 215 residues. Sequence analysis showed that F3 lipase contained a signal peptide composed of 34 amino acids with an H domain of 18 residues. A tat-like motif was found in the signal peptide similar to some other Bacillus pumil...

متن کامل

Optimizing Primary Recovery and Refolding of Human Interferon-b from Escherichia coli Inclusion Bodies

Background: The refolding of proteins from inclusion bodies is affected by several factors, including solubilization of inclusion bodies by denaturants, removal of the denaturant, and assistance of refolding by small molecule additives. Objectives: The purpose of this study was optimization of recombinant human interferon-b purification in order to achieve higher efficiency, yield, and a produ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 310 ( Pt 2)  شماره 

صفحات  -

تاریخ انتشار 1995